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Abstract. The formation of kinetic. transient microstructures in structural phase transitions is 
analysed within the framework of ume-dependent Landau-Ginzburg theories. The mesoscopic 
rate equation is i l# l ih = $ - $3 t i12#/;%x2 - y ;12$/ilx4 i 6  ;lb#/ilx6. A front of a stable state 
$ = 1 can grow into an unstable region with @ = 0 in an oscillatory manner. It will then leave 
behind a transient domain structure with quasi-periodic walls. Such domain structures occur 
for positive and negative values of y with sufficiently large values of IyI The phase diagram 
in ( y ,  8) space is explored using computer simulation. The repetition length does not diverge 
at the bifurcation between an oscillatory and solitonic regime except at the point y = 1/12. 
S = 0 studied previously. It is shown that recent computer simulation studies of ‘realistic’ 
microstructures used implicit values of y and S close to the bifurcation condition. 

1. Introduction 

Structural phase transitions can generate patterns of microdomains for a sufficiently rapid 
quench through the transition temperature Tc. The most commonly observed patterns for 
T c T, are somewhat periodic arrays of twin walls (the ‘stripe’ pattern) and interwoven 
wall segments (the ‘tweed’ pattern). Nearly every framework structure with atomic ordering 
strongly coupled with strains (e.g., ferroelastic and co-elastic crystals) show such patterns 
under suitable conditions for rapid change of temperature or pressure [ 11. Typical examples 
are the oxygen-vacancy ordering in YBaZCu30, superconductor [2,3] ,  AI-Si ordering in 
feldspars and cordierites [4,5,6] and the ferroelastic transitions in Ba-doped Pb3(PO4)z [?I. 
In all of these cases the patterns are thermodynamically unstable inhomogeneous structures 
although they persist for long times (even geological times for feldspars [4,5]). 

The same pattern formation is also observed in generic computer experiments when 
pseudo-spin coordinates are indirectly coupled via elastic forces [S-131. Such models 
invariably show tweed as the first kinetic microstructure which often develops under 
annealing into a stripe pattern. Both the direct observation and the computer experiment 
show that the length scale of the pattern is mesoscopic, i.e. it extends from some I O  A to 
several hundred tlngstroms. Furthermore, these mesoscopic structures are very similar in 
many different materials. We may assume, therefore, that we are dealing with an universal 
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phenomenon in many (if not all) ferroelastic and co-elastic phase transitions with sufficiently 
long transient times. 

Kinetic microstructures are firmly established, therefore, both from experimental 
observations and generic computer experiments. Their analytical description, on the other 
hand, is far from being clear. The probably most promising attempt to formulate an 
analytical theory was based on the following idea [14-171. Consider a sample cooled 
quickly through the transition temperature and let precursor ordering occur in part of the 
sample (e.g. due to surface relaxations [18,19]. The kinetic process may then, at least 
partly, relate to the growth of such a~ nucleus. Due to the anisotropic nature of the elastic 
interactions, walls can only be generated parallel to one of two well-defined planes with 
normals which are usually referred to as ‘soft’ directions 111. Any movement of a wall 
maintains its orientation, so rotations and bending of walls do not occur in the defect-free 
crystal with only one wall orientation present. Arrays of walls with the same orientation 
form stripe patterns. Here we attempt to describe such stripe patterns in a simple ID picture. 
The fundamental question is now: how does the boundary between the stable and unstable 
state of the material move through the sample when a crystal i s  cooled through a phase 
transition. We show in this paper that solitary kink movements exist only under rather 
limiting physical conditions whereas oscillatory movements are rather common solutions. 
This result may shed some light on the experimental observation that periodic (or nearly 
so) stripe patterns are often observed in ferroelastics where lateral movements of walls 
after their generation virtually never takes place in a stress-free material [I]. It is very 
likely, therefore, that the stripe pattern is the result of the kinetic transformation of the 
high-symmetry phase into the low-symmetry phase, e.g. in a quench experiment, and is not 
due to a reshuffle of pre-existing domain walls. How far our approach is realistic depends 
largely on the appearance of the tweed microstructure as a precursor of the stripe pattern 
(e.g. in YBaZCup07 [2,3] and cordierite 141). In ferroelastic materials such as Pbs(POr)z 
stripe patterns appear without prior tweed formation and it is likely that our present approach 
may be applicable for these materials [ I ,  7,201. 

Stripe patterns as the result of the kinetic phase transitions after rapid undercooling 
were already postulated as the solution of a general rate equation of partially conserved 
order parameters [ 141. The driving force for the kinetic process was related to an excess 
Gibbs free energy of the phase transition of Landau-Ginzburg type with a second-order 
gradient energy. In this paper we generalize the approach and explore the conditions for 
pattern formation for kinetic rate equations with driving forces including second-, fourth- and 
sixth-order gradient terms. We show that sufficiently large positive or negative fourth-order 
gradient terms lead to pattern formation whereas large positive sixth-order terms stabilize 
solitary kink waves. 
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2. The rate equation 

We start from the rate equation discussed in detail 1141 with an order parameter Q which 
is essentially non-conserved with possible weak contributions Erom local conservation. The 
driving force is related to the excessGibbs free energy G of the phase transition [ 1, 141 and 
the corresponding rate equation [20-22] is 
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where t 3  tc are lengths related to the conservation behaviour of the order parameter with 

G = j d P [ 5 a Q z + , 6 Q 4 + - g l V Q ~ 2 + - h ( 0 2 Q ) 2 ] .  1 1 -  1 1 

2 2 

The bracket in equation (1) contains gradient operators in the kinetic prefactor; its application 
is to be understood in the usual way as a series expansion in the gradient operator [22].  

Consider first a fully non-conserved ordering process. Assuming changes of the order 
parameter only in one direction~(e.g., X), we have 

~~ 

a Q  3 a2Q a4Q r -  = lale- bQ +g- -h-  
at ax2 ax4 ' 

Weak conservation modifies the equation coefficients in a following~way: 

Rescaling the time,-spatial coordinate, and order parameter 

Q -x @ = -  , la'l t = - t  
T Qo , 

leads to the.rate law in dimensionless parameters: 

a2@ a 4 $ ~  4 - 8 3  + - - y - a4 
at' a i 2  a i 4  

y =h'la'l/g R . 

-=  

which is the so-called extended Fisher-Kolmogorov (EFK) equation [15,161, with 

In the case of absence of both conservation & = 0) and a higher-order gradient term 
(h = 0) in the expression for the free energy, we have y = 0, and this corresponds 
to the case of the ordinary (non-extended) Fisher-Kolmogorov (FK) equation l17] .~ Weak 
conservation with h = 0 corresponds to positive values of y ,  while in the non-conserved 
regime h can he negative leading to y < 0. This means that the coefficient y in the EFK 
equation can be both positive and negative. In the case where y c 0 the model is unstable at 
short wavelengths and the EFK equation must be extended further to include the sixth-order 
derivative with positive coefficient 6'in order to find stable solutions: , 

A sixth-order term also follows, of course, from the mixing of second- and fourth-order 
terms in the kinetic prefactor and the derivative of the Gibbs free energy. In all cases we 
arrive at the same equation (8). We will now analyse the solutions of this equation for the 
initial conditions described in the introduction, i.e. a region with q5 = 1 growing with a 
front into a region of @ = 0. 
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3. Pattern formation 

The following question now arises: under which condition does pattem formation occur? 
Furthermore, we ask what the geometrical nature of the front propagation is. It is an 
object of the present work to study the pattern formation for equation (8) on the half-plane 
( y ,  6 > 0). Previous research focused on the simple case y > 0, S = 0 [14,15], where a 
bifurcation was found for y = yc =~1/12 with pattem formation for y > yc, its absence 
for y c ye, and diverging repetition length A for y + yc. Using the language of phase 
transitions, this bifurcation has qualities of a second-order behaviour (with A playing the 
role of a correlation length). 

In order to explore the bifurcation behaviour in the ( y .  6) space, we have undertaken 
numerical simulation of our equation. The starting condition was always a nucleus of 
the stable phase q5 = 1 with a front of the shape exp(-x2/az) with a = 4 growing 
into the unstable state q5 = 0. The time evolution of q5 was then calculated by 
solving equation (8) numerically using a standard mcs (forward-time-centred-space) finite- 
difference representation method [30]. The step size in space was 0.05 and in time space 
0.001: further tests did not show any dependence on the step size. We used fixed boundary 
conditions. Tests with different sample sizes ( ~ 5 0 0 )  did not indicate finite-size effects in 
the intervals shown in figure 1. 

In all calculations. we find that the unstable state 6 = O~transforms to the stable state 
6 = 1 .  This corresponds to a simple propagation of the front. After some time steps this 
propagation changes for sufficiently large values of IyI. The front inverts the stable state 
q5 = 1 into the equally stable state q5 = -1 leaving behind a kink. This process is then, 
after some more time steps, inverted and produces an antikink. The distance between kinks 
and antikinks is constant after the first few oscillations and we refer to this distance as the 
repetition length. The generation of kinks and antikinks continues until the entire regime 
6 = 0 is transformed into a pattern with domains of q5 = 1 and 6 = -1. 

The numerical solutions are shown in figure 1. The detailed analysis shows two types 
of pattern. In each case a bifurcation point was found with yc increasing with 8,. The 
first type relates to solutions with y > 0. The inverse repetition length does not disappear 
for 6 > 0 instead, it jumps from zero to some finite value. In this sense, this behaviour 
could be called ‘first order’. For 6 = 0 the repetition lengths were found to be the same as 
calculated using the analytical method discussed in [15]. 

The second type of pattern formation occurs for y c 0. Bifurcation was observed 
approximately along the line S =~yz/3 .  There is no divergence of the repetition length. 
The difference from the pattern corresponding to positive y is that the propagation front 
always shows precursor ‘ripples’. These ripples were predicted from atomistic calculations 
[18,19] and its has been suspected that they occur in ferroelastic Ph(PO& [7]. 

Let us now turn to the phase diagram for the solitonic and oscillatory solutions to our 
equation. Such a phase diagram was derived from numerical calculations and is shown in 
figure 2. For small values of 6 it shows a narrow gap between two regions with pattern 
formation. Inside the gap we find only solitonic movements. This gap extends from y = 0 
to y = 1/12. The surprising result is, thus, that for small 6,  pattern formation almost always 
occurs, notably for both positive and negative y .  The role of 6 is to increase the gap, i.e. 
the sixth-order gradient of term reduces the tendency of the front propagation to oscillate. 
This effect is very large; with S = 0.1, we find that the gap now extends from y = -0.55 to 
y = 0.3, i.e. the sixth-order gradient term efficiently stabilizes the solitonic movement and 
prevents pattern formation. Note that in the y < 0 regime the model becomes unstable as 
6 goes to zero; this means that the line y c 0, 6 = 0 is not included in the phase diagram. 
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Figure 1. Profiles of a propagating front at different times for (a) positive and (b )  negative 
values of y. The stable state grows into the area o f  the unstable state and reverts from order 
($ = 1 )  to anti-order ($ = -1) after Some initial propagation. Oscillatory behaviour follows in 
both cases laying an unstable (but long-lived) panem behind the propagation front. The main 
difference between (a) and (b)  is the formation of precursor ripples [IS] for y c 0 but not for 
y > 0. 

Finally, we compare our results with those of recent computer simulations of the 
microstructures in high-temperature superconductors [9-111 and related general models 
[23,24]. In these models, no partial conservation is taken into consideration (i.e. & = 0). 
The higher-order gradient terms stem now from the way local state parameters interact via 
lattice distortions. It was found that stripe patterns always develop along specific directions 
(the so-called 'soft' directions [110) in YBaZCu307). 

Consider mapping of the effective king model for this situation onto the equation 
studied above. The strain-mediated interaction allows treatment in the framework of mean- 
field theocy [8,25,26]. W e  will use the expression for the free energy in this approximation 
~ 7 1  
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Figure 2. A phase diagram for panem formation on the half-plane (y. 6 z 0). Two branches 
corresponding to different signs of y constitute a boundary which separates oscillalory and 
solitonic movement of the front. The xea below and above the boundary correspond to the 
presence md absence of pattern, respectively. The rectangle corresponds to the values of y and 
6 derived from parameters of the computer simulation (equation (16)). 

G = E - T S  (9) 

assuming that it is valid for arbitrary non-equilibrium order parameter distribution [28,29]. 
Choosing a single direction for the pattern formation in the continuum limit (i.e. Q ( x ,  y,  z) 
becomes Q(x) ) ,  we have for the internal energy 

where J ( k )  is determined by the strain-mediated interactions between spins including its 
specific k-dependence [23]. The wavevector expansion of J(k , ,  0, 0) in the sixth order is 

J(k , ,  0, 0) = (0, 0, 0)  - gk: - hk: - pk,6 (13) 

where positive coefficients always lad to bell-shaped profiles. If h andor p is negative 
but sufficiently small the bell shape is preserved. After conversion of the internal energy 
expression to direct space, and fourth-order expansion of the entropy in terms of the order 
parameter (sufficient to keep basic non-linearity), one again obtains the Ginzburg-Landau 
functional for the free energy. Rescaling the kinetic equation as before, we find the equation 
under study with the coefficients 

Y =hla l lg2  8 = p ~ a ? / g ’  (14) 
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where 

a = T - J (0 .  0, 0). (15)  

We now calculate y and 6 from the model parameters used in the computer experiment 
[23,24] and find 

y = -0.193 * 0.007 S = 0.013 f0.003. (16) 

This point lies on the bifurcation line within the accuracy of calculation (see figure 2). It 
appears to be likely, therefore, that a very stable stripe pattern observed in the atomistic 
computer simulation would also appear if a stable phase were to grow into the region of an 
unstable phase. 

The fact that pattern formation from front propagation occurs for the same set of 
parameters for the Gibbs free energy as was used for an atomistic Hamiltonian in the 
computer simulation of microstructures from random noise may not be purely coincidental. 
In fact, the observed long lifetime of stripe patterns in the computer simulation might well 
relate to our result that similar patterns also emerge from front propagation. This conjecture 
can now be tested if we change J(k , ,  0, 0) in such a way that y = hlal/g2 varies through 
the three stability fields in the phase diagram in figure 2, we expect extensive microstructures 
for large negative values of y .  more uniform structures inside the gap around y = 0 and 
strong microstructures again for large positive values of y .  Computer simulation studies to 
test this hypothesis are planned. 
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